Ciani Elisabetta


Responsabile dell'U.O.

Cognome e Nome

Ciani Elisabetta

Qualifica

PA

Dipartimento

Biomedical and Neuromotor Sciences, University of Bologna

Settore scientifico disciplinare

BIO/09 FISIOLOGIA

E-mail

elisabetta.ciani@unibo.it

Telefono

0512091773

Personale strutturato

Cognome e Nome

Guidi Sandra

Qualifica

Ricercatore

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Cognome e Nome

Trazzi Stefania

Qualifica

Ricercatore

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Personale non strutturato

Cognome e Nome

Fuchs Claudia

Qualifica

Post-doc

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Cognome e Nome

Stagni Fiorenza

Qualifica

Post-doc

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Cognome e Nome

Gennaccaro Laura

Qualifica

Post-doc

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Cognome e Nome

Giacomini Andrea

Qualifica

Post-doc

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Cognome e Nome

Ren Elisa

Qualifica

Post-doc

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Cognome e Nome

Emili Marco

Qualifica

Ph.D student

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Cognome e Nome

Medici Giorgio

Qualifica

Ph.D student

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Cognome e Nome

Uguagliati Beatrice

Qualifica

Ph.D student

Dipartimento

Biomedical and Neuromotor Sciences

Ente di appartenenza

University of Bologna

Linee di ricerca

The main research lines concern the identification of therapies able to improve the severe cognitive disability that characterizes two neurodevelopmental disorders: CDKL5 disorder and Down Syndrome (DS). CDKL5 disorder is a rare, severe neurodevelopmental disorder that mostly affects girls. CDKL5 patients show a range of phenotypes including seizures, visual impairment, mental retardation and autism. Currently, there is no cure or effective treatment for CDKL5 disorder, and the mainstay of care for this disorder is support for the families. Therefore, identification of therapies for CDKL5 disorder will represent an important social challenge. The goal of this project is to identify therapies for CDKL5 disorder. Precisely, we aim to develop and evaluate the efficacy of therapeutic approaches targeting molecules affected by CDKL5 mutations in a Cdkl5 knockout mouse model. Treatment options will range from pharmacological drug therapies, to gene therapy, to an innovative “protein substitution therapy" that compensates for CDKL5 deficiency through administration of a recombinant protein produced in the laboratory. Ours preliminary results, suggest that a CDKL5 protein therapy could be indeed an effective therapeutic approach. Altogether, we deem that the approaches used in this project shall ensure achievement of substantial advances in the development of new interventions for this disorder. A second topic concerns the study of mechanisms underlying mental retardation in DS (trisomy 21), the most common genetic cause of mental retardation and autosomal aneuplodia compatible with postnatal survival. The study is aimed to clarify the possible causes underlying changes in neurogenesis during critical phases of brain development. Research is carried out in the Ts65dn mouse model of DS and in human fetuses. In an attempt to find effective treatments, possibly useful in humans, we are focusing on therapies that could enhance neuron production.

Tecnologie in uso dall'UO

  1. 1.
    Behavior Analysis
  2. 2.
    Molecular cloning
  3. 3.
    Primary and established cell line culture
  4. 4.
    Histological and immunohistochemistry
  5. 5.
    Animal treatments
  6. 6.
    Western blot analysis
  7. 7.
    Dendritic arbor reconstruction
  8. 8.
    Radioactive kinase assay
  9. 9.
    Phosphoproteomic analysis

Strumentazione

Denominazione

GloMax® Discover System
Nikon Eclipse E600 microscope equipped with a Nikon Digital Camera DXM1200 (ATI System) and Working Station

Struttura ove la strumentazione è allocata

DIBINEM
DIBINEM

Responsabile

Elisabetta Ciani
Elisabetta Ciani

Pubblicazioni

  1. 1.
    Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome. Stagni F, Raspanti A, Giacomini A, Guidi S, Emili M, Ciani E, Giuliani A, Bighinati A, Calzà L, Magistretti J, Bartesaghi R. Neurobiol Dis. 2017 Jul;103:11-23. doi: 10.1016/j.nbd.2017.03.012
  2. 2.
    Lithium Restores Age-related Olfactory Impairment in the Ts65Dn Mouse Model of Down Syndrome. Guidi S, Bianchi P, Stagni F, Giacomini A, Emili M, Trazzi S, Ciani E, Bartesaghi R. CNS Neurol Disord Drug Targets. 2017;16(7):812-819. doi: 10.2174/1871527315666160801143108.
  3. 3.
    HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Trazzi S, Fuchs C, Viggiano R, De Franceschi M, Valli E, Jedynak P, Hansen FK, Perini G, Rimondini R, Kurz T, Bartesaghi R, Ciani E. Hum Mol Genet. 2016 Sep 15;25(18):3887-3907. doi: 10.1093/hmg/ddw231. Epub 2016 Jul 27.
  4. 4.
    Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome. Stagni F, Giacomini A, Emili M, Trazzi S, Guidi S, Sassi M, Ciani E, Rimondini R, Bartesaghi R. Neuroscience. 2016 Oct 1;333:277-301. doi: 10.1016/j.neuroscience.2016.07.031. Epub 2016 Jul 25
  5. 5.
    Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome. Giacomini A, Stagni F, Trazzi S, Guidi S, Emili M, Brigham E, Ciani E, Bartesaghi R. Neurobiol Dis. 2015 Oct;82:385-396. doi: 10.1016/j.nbd.2015.08.001
  6. 6.
    Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder. Fuchs C, Rimondini R, Viggiano R, Trazzi S, De Franceschi M, Bartesaghi R, Ciani E. Neurobiol Dis. 2015 Oct;82:298-310. doi: 10.1016/j.nbd.2015.06.018.
  7. 7.
    Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice. Stagni F, Giacomini A, Guidi S, Ciani E, Ragazzi E, Filonzi M, De Iasio R, Rimondini R, Bartesaghi R. Neurobiol Dis. 2015 Feb;74:204-18. doi: 10.1016/j.nbd.2014.12.005
  8. 8.
    Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling. Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E, Gross C, Calzà L, Bartesaghi R, Ciani E. Neurobiol Dis. 2014 Oct;70:53-68. doi: 10.1016/j.nbd.2014.06.006.
  9. 9.
    APP-dependent alteration of GSK3β activity impairs neurogenesis in the Ts65Dn mouse model of Down syndrome. Trazzi S, Fuchs C, De Franceschi M, Mitrugno VM, Bartesaghi R, Ciani E. Neurobiol Dis. 2014 Jul;67:24-36. doi: 10.1016/j.nbd.2014.03.003
  10. 10.
    Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model. Guidi S, Stagni F, Bianchi P, Ciani E, Giacomini A, De Franceschi M, Moldrich R, Kurniawan N, Mardon K, Giuliani A, Calzà L, Bartesaghi R. Brain. 2014 Feb;137(Pt 2):380-401. doi: 10.1093/brain/awt340

Dottorati di ricerca

Componente UO

Elisabetta Ciani

Dottorato di ricerca

Scienze Biomediche

Coordinatore

Prof Lucio Cocco

Sede

Università di Bologna